
USING THE GAME BOY ADVANCE TO TEACH COMPUTER

SYSTEMS AND ARCHITECTURE *

Ian Finlayson
Assistant Professor of Computer Science

University of Mary Washington
Fredericksburg, Virginia

ABSTRACT

This paper presents an approach to teaching computer systems and architecture
using Nintendo's Game Boy Advance handheld game console. In this
approach, students learn to write programs in C and assembly for this system.
The system is also used to illustrate concepts such as memory systems,
memory-mapped I/O, direct memory access and bitwise operations, all of
which are needed to effectively program the console. Intended benefits of this
approach are to motivate interest by using a platform that many students know
and own, and also to get students “closer to the metal” by writing code for a
device where you must interact with the hardware more directly than most
other systems.

1 - INTRODUCTION

The Game Boy Advance (GBA) is a handheld video game console created by
Nintendo, and first released in 2001 [3]. The system was a commercial success selling
over 33 million consoles in the Unites States [1]. Developing programs for the console
requires writing for the hardware in a way that is unusual on most modern computer
systems. The GBA does not have an operating system, so programs interact with the
hardware directly, and have full control over system memory. This paper presents a
computer systems and architecture course based around the Game Boy Advance. In this
course, students learn to write programs for the GBA in C and assembly and learn how
the hardware of the GBA works, including typical topics such as memories and
processors, but also including special-purpose graphics hardware. There have been

* Copyright © 2016 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

78

CCSC: Eastern Conference

similar approaches using embedded systems in teaching computer architecture such as
the Arduino[5] and PIC [7] systems.

The rest of this paper is organized as follows: In Section 2, we discuss the hardware
features of the GBA. In Section 3, we provide a brief overview of the programming
mode of the GBA which makes it interesting for teaching computer systems. In Section
4, we discuss the design of a course incorporating GBA programming. In Section 5, we
provide an evaluation of this course including student survey feedback. Finally, in
Section 6 we draw conclusions.

2 - GAME BOY ADVANCE HARDWARE

The Game Boy Advance features a 3-stage ARM processor running at 16.78 MHz
[3]. Despite the fact that the system is somewhat old, the fact that it runs the ARM
instruction set makes learning about it relevant for students. The ARM instruction set is
used in nearly all tablets, cell phones, and in embedded computers such as the Raspberry
Pi. Along with x86, it is one of the two major instruction sets in wide use [6]. The fact
that the processor is so slow by today's standards means that one always has to be
cognizant of performance to program it effectively.

The GBA has 384 kilobytes of memory, not counting the memory of the game
cartridges [3]. 288 kilobytes of this memory is general-purpose and is used for global
variables and the stack. There is an additional 96 kilobytes of memory dedicated to video
RAM (VRAM). The usage of VRAM depends on which graphics mode the system is in
(as described in the next section). In the simplest form, VRAM is simply an array of
pixel data which is mapped onto the screen. There is also 1 kilobyte of memory-mapped
control registers, such as for controlling the graphics system, setting scroll amounts,
reading button states, and so on.

The memory system supports direct memory access (DMA) to copy from one
section of memory to another. Because the GBA has no operating system, the
programmer is able to manually turn on DMA, which allows us to quickly copy data from
one section of memory to another - such as copying color data into VRAM. The GBA
provides a more hands on platform for talking about DMA than most systems, where the
operating system does not let you trigger DMA directly.

The GBA has a 240x160 pixel screen which supports 15-bit color (32,768 different
colors). There are 5 bits each for the red, green, and blue color components. The console
also has 10 hardware buttons.

3 - PROGRAMMING THE GAME BOY ADVANCE

This section provides a brief overview of how one writes programs for the Game
Boy Advance. The goal of this section is, of course, not to provide a comprehensive
tutorial on programming for the console, but merely to give an overview of the
programming model that the system presents.

Programs for the GBA are written in C, or ARM assembly (or some combination of
both). There is a port of the GCC compiler tool chain available under the name “DevKit

79

JCSC 32, 3 (January 2017)

Advance” [2]. While the resulting programs can be run directly on GBA hardware (using
a special link cable or special-purpose cartridge), it is easier to run them under an
emulator. Such emulators are freely available for Linux, Windows, OSX as well as
Android, iOS and Chrome.

As stated above, the GBA does not have an operating system. It also does not have
any sort of API or library of functions built in for controlling graphics, sound and input.
Instead, we interact with the hardware directly through memory-mapped registers. For
instance, the GBA has a “button state register” which is updated by the hardware to
reflect the status of the GBA's 10 buttons [8]. The register is 16 bits large, and is
accessed through memory location 0x04000130. The lower ten bits of this value reflect
whether each button is pressed (0) or unpressed (1). So to check if the first of these (the
'A' button) is pressed, we could use code like the following:

volatile unsigned short* button_state = 0x04000130;
if ((*button_state & 0x1) == 0) {
 // Button A is pressed!
}

There are also memory-mapped registers for controlling various aspects of the
hardware. For instance, the “display control register” stores various settings related to
the graphics including which mode the hardware is in (described below), which of the
various background layers are enabled, whether sprites should be drawn, and so on.
Because there are multiple settings stored in this one register, we must again use the
bitwise operators to combine them. Students programming the GBA must quickly
become comfortable doing bitwise operations on integer values.

The way the graphics on the GBA work depend on which of the six graphics mode
the system is in [8]. Modes 0-2 are tile-based modes, and modes 3-5 are bitmap modes.
With the bitmap modes, VRAM is simply a 2D array of pixel data. The programmer puts
graphics on the screen by writing colors into this array. In modes 4 and 5, there are
actually two such arrays, which allows for smoother graphics with double-buffering,
though each of these modes has a downside: mode 4 requires that colors are stored in a
palette, and mode 5 has a reduced screen resolution.

The bitmap modes are very simple, and very flexible, but the downside is that all
graphics must be done in software. We place pixels on the screen manually, by storing
them into VRAM. The issue with this is performance. If we want to update the whole
screen, such as when scrolling it to the left or right, that will mean writing each of the
240x160 = 38,400 pixels. Because the clock speed of the CPU is just 16.78 MHz, we
only have 437 clock cycles to spend on each pixel, each second. If we want our program
to run at 60 frames per second (the native refresh rate of the GBA screen), then that's only
7 clock cycles per pixel, which is not nearly enough to do anything useful.

For this reason, most games on the GBA actually use one of the tile modes [8].
With the tile modes, the programmer specifies a number of tiled backgrounds including
what images to use for each 8x8 tile, and how they should be displayed on the screen.
The GBA has special hardware for pushing the pixel data from the tiles onto the screen.
The difference between the three tile modes just lies in the number, size and capabilities
of the tiled backgrounds. To scroll the tiled background either vertically or horizontally,
we just write the number of pixels to scroll into a memory-mapped hardware register.

80

CCSC: Eastern Conference

This really drives home to students the concept of doing something “in hardware” vs.
doing it “in software”. Scrolling the screen in software (in a bitmap mode) is impossibly
slow, but doing it in hardware (in a tile mode) is basically instantaneous.

The GBA also has a hardware sprite system [8]. A sprite is a 2D object (such as a
character, enemy, or projectile) which can be moved about the screen. To use hardware
sprites, the programmer specifies the positions, and pixel data for any of 128 available
sprites. They can be moved, or flipped vertically or horizontally, by modifying their
attributes in a special section of memory for storing sprites. This sprite attribute memory
section (starting at address 0x7000000) stores this data for all of the 128 sprites.

Because of the lack of an operating system, there are no system calls available, and
also no C library functions that rely on system calls, such as printf, scanf, time, etc. Apart
from the special areas of memory we interact with, and the lack of operating system
support, programming the GBA is similar to writing any other C or assembly program.

4 - COURSE DESIGN

The learning objectives for our Computer Systems and Architecture course include
programming in the C programming language and some assembly language, as well as
computer organization, and digital design topics. This section describes how the Game
Boy Advance was incorporated into this course so as to fulfill these learning objectives.

Likely the biggest course objective that using the GBA addresses is C programming.
Students had two sizable programming projects using the C programming language. The
nature of the GBA also really emphasizes programming with pointer variables. In a
typical computer system, pointers are somewhat abstract, because we never really know
what the value of a pointer will be until we run the program. Furthermore, the pointer
values we get at runtime are in fact virtual memory addresses, not real ones. These layers
of abstraction, though necessary under a modern operating system, can get in the way of
understanding. With the GBA, we know exactly which address certain values are at. For
instance, VRAM always starts at the real address 0x06000000.

The GBA as a platform also facilitates teaching assembly programming. It uses an
ARM processor which is one of the two major instruction sets in use. This means that
there are a plethora of learning materials for ARM assembly programming, including a
new ARM version of Patterson and Hennessy's classic Computer Organization and
Design text[4]. ARM is a relatively simple RISC style architecture. It is not as simple
as architectures like MIPS, DLX or LC3, but unlike those architectures, ARM is widely
used, and students can run their programs on actual hardware.

As mentioned above, core concepts like memory-mapped I/O, DMA, and having
hardware support for certain operations all have hands-on examples when working with
a computer without an OS, such as the GBA. The ARM CPU of the GBA also utilizes
pipelining with a simple 3-stage pipeline that is easy relatively to understand. It does not
utilize more advanced techniques such as superscalar or out of order execution.

The first full programming assignment given in this course was to implement the
game “Pong” using the simple graphics mode where the screen is simply an array of pixel
data. This assignment utilizes pointers, array manipulation, and bitwise operators. In

81

JCSC 32, 3 (January 2017)

order to have their Pong games run at an acceptable speed, students also had to avoid
redrawing the entire screen. They did this by keeping track of which areas of the screen
(those near the ball and paddles) had changed since the last frame - this is known as the
“dirty rectangles” optimization.

For the second full programming assignment, students were able to write any sort
of game they wanted using a tiled background and sprites. Amongst the games students
chose were partial clones of games such as Super Mario World, Zelda, Flappy Bird,
Battleship and Space Invaders. The level of time students put into this assignment was
somewhat uneven, with some spending far more time than anticipated, and making quite
sophisticated games, while others did the minimum to fulfill the requirements. This
assignment also required students to write some of their game in ARM assembly (two
functions of at least eight lines each).

5 - EVALUATION

In order to attempt to evaluate how this approach to the course went with students,
they were given a short, ungraded, anonymous survey. 34 of the 54 students in the course
responded (62.96% response rate).

The first question asked students if they had ever owned a GBA system. 91% of
respondents answered yes to this question. Furthermore, 55% of respondents reported
that they still own a GBA. The system was and is still very popular, and writing games
for a console that they had used was a good motivator for many students.

Next, students were asked whether they preferred writing programs for the GBA
more than a typical computer system, as they have done in other classes. This question
used a Likert scale where a 5 is “strongly preferred the GBA” and a 1 is “strongly
preferred a typical computer system”. The average response to this question was 3.42
with a standard deviation of 1.23. Thus, there was a slight preference to programming
for the GBA, which we found encouraging given that the platform is objectively more
difficult to program for.

The next question asked students whether they liked learning about the graphics
system of the GBA and felt it added to the course. This also used a Likert scale where
5 is “strongly agree that it added to the course” and 1 “strongly disagree that it added to
the course”. Here, the average was 4.36 with a standard deviation of 0.65.

One concern we had was whether there would be a difference in preferences of the
GBA based on gender. Broadening participation in computer science courses is an
important goal, and the concern was that perhaps the game system might appeal more to
males than to females. In order to test this, we also asked respondents for their gender
and used the results to run a t-test on the results of the previous two questions. We found
that there was no statistically significant difference between the male and female
preference for programming the GBA compared to typical computer systems, t(28) =
0.06, p = 0.48. We did the same thing for the question about enjoying learning about how
the graphics systems and also found there was no statistically significant difference
between the preferences of males and females, t(28) = 0.47, p = 0.32.

82

CCSC: Eastern Conference

We also included a free-form response question on the survey. Many students
expressed enthusiasm for working with the system, and also expressed that the
assignments were challenging. The biggest complaint students had was that they did not
have enough time for the assignments which was partially due to a large number of snow
days.

6 - CONCLUSIONS

This paper presented an approach to teaching computer systems and architecture
using Nintendo's Game Boy Advance handheld game console. Our goals for doing this
included a desire to appeal to the students who had grown up using these systems, and
also to more effectively present course material including C and assembly programming,
pointers, memory-mapped I/O, DMA, and general computer architecture and design
concepts.

Overall, it went well enough for us to consider using this approach again. Students
did enjoy learning about the system, and also mostly enjoyed writing programs for it,
despite the added difficulty of doing so relative to most computer systems.

Downsides of this approach are that it is rather difficult to write programs for the
device, so C and assembly programming ends up being rather a large portion of the
course. In our curriculum, this is intended, but there may not be enough room in other
courses to incorporate all of the C programming concepts needed. There are also not
many resources for writing GBA programs. Most of the materials are online tutorials, the
best of which is [8]. On the flip-side one of our survey respondents pointed out that
“there's not much material for it on the internet so it forces people to actually do it instead
of just copying from stack overflow” which is perhaps an unintended side benefit.

REFERENCES

[1] Behrens, M., Nintendo Sales Through End of November Revealed,
http://www.n-sider.com/contentview.php?contentid=2984, December 1, 2006.
Retrieved April 29, 2016.

[2] DevKit Advance, http://devkitadv.sourceforge.net/, June 23, 2003. Retrieved
April 29, 2016.

[3] Granett, D., Game Boy Advance: It's Finally Unveiled,
http://www.ign.com/articles/2000/08/24/game-boy-advance-its-finally-unveiled,
August 23, 2000. Retrieved April 29, 2016.

[4] Patterson, D., Hennessy, J., Computer Organization and Design: The Hardware
Software Interface: ARM Edition, Burlington, MA: Morgan Kauffman, 2016.

[5] Sprague, Nathan., Arduino as a Platform for a Computer Organization Course.
Journal of Computing Sciences in Colleges 28.3 (2013): 53-60.

[6] Turley, J., Intel vs. ARM: Two Titans' Tangled Fate,
http://www.infoworld.com/article/2610369/processors/intel-vs--arm--two-titans--
tangled-fate.html, February 27, 2014, Retrieved April 29, 2016.

83

JCSC 32, 3 (January 2017)

[7] Valentine, D., Using PIC Processors in Computer Organization, Journal of
Computing Sciences in Colleges, 24, (1), 116-122, October 2008.

[8] Vijn, J., Tonc v1.4.2 : Table of Contents, http://www.coranac.com/tonc/text/,
March 24, 2013. Retrieved April 29, 2016.

84

